Crossover distribution and high interference for both the X chromosome and an autosome during oogenesis and spermatogenesis in Caenorhabditis elegans.

نویسندگان

  • Philip M Meneely
  • Anna F Farago
  • Tate M Kauffman
چکیده

Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has essentially one crossover during oogenesis, with only three possible double crossover exceptions among 220 recombinant X chromosomes. All three had one of the two crossovers in the same chromosomal interval, suggesting that crossovers in that interval do not cause interference. No other interval was associated with double crossovers. Very high interference was also found on an autosome during oogenesis, implying that each chromosome has only one crossover during oogenesis. During spermatogenesis, recombination on this autosome was reduced by approximately 30% compared to oogenesis, but the relative distribution of the residual crossovers was only slightly different. In contrast to previous results with other autosomes, no double crossover chromosomes were observed. Despite an increased frequency of nonrecombinant chromosomes, segregation of a nonrecombinant autosome during spermatogenesis appears to occur normally. This indicates that an achiasmate segregation system helps to ensure faithful disjunction of autosomes during spermatogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line.

In many organisms, female and male meiosis display extensive sexual dimorphism in the temporal meiotic program, the number and location of recombination events, sex chromosome segregation, and checkpoint function. We show here that both meiotic prophase timing and germ-line apoptosis, one output of checkpoint signaling, are dictated by the sex of the germ line (oogenesis vs. spermatogenesis) in...

متن کامل

Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans.

In mammals, one of the two somatic X chromosomes in the female is inactivated, thereby equalizing X chromosome-derived transcription in the two sexes, a process known as dosage compensation. In the germline, however, the situation is quite different. Both X chromosomes are transcriptionally active during female oogenesis, whereas the X and Y chromosomes are transcriptionally silent during male ...

متن کامل

V-ATPase V1 sector is required for corpse clearance and neurotransmission in Caenorhabditis elegans.

The vacuolar-type ATPase (V-ATPase) is a proton pump composed of two sectors, the cytoplasmic V(1) sector that catalyzes ATP hydrolysis and the transmembrane V(o) sector responsible for proton translocation. The transmembrane V(o) complex directs the complex to different membranes, but also has been proposed to have roles independent of the V(1) sector. However, the roles of the V(1) sector hav...

متن کامل

Gamete-Type Dependent Crossover Interference Levels in a Defined Region of Caenorhabditis elegans Chromosome V

In certain organisms, numbers of crossover events for any single chromosome are limited ("crossover interference") so that double crossover events are obtained at much lower frequencies than would be expected from the simple product of independent single-crossover events. We present a number of observations during which we examined interference over a large region of Caenorhabditis elegans chro...

متن کامل

Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans.

Mutations in the him-5 gene in Caenorhabditis elegans strongly reduce the frequency of crossovers on the X chromosome, with lesser effects on the autosomes. him-5 mutants also show a change in crossover distribution on both the X and autosomes. These phenotypes are accompanied by a delayed entry into pachytene and premature desynapsis of the X chromosome. The nondisjunction, progression defects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 162 3  شماره 

صفحات  -

تاریخ انتشار 2002